Inheritance, Generics, and Binary Methods in Java

M. L. Barron-Estrada, R. Stansifer

Departamento de Sistemas y Computacién
Instituto Tenolégico de Culiacan
Av. Juan de Dios Batiz s/n. Col. Guadalupe
Culiacan, Sin. CP. 80220 Tel. 667-7133804
mbamon@fit.eduy,

ABSTRACT

Java has adopted a mechanism to support paramelerized
types that will be available in the next major release. A draft
specification to add generics to the Java™ Programming
Language was published two years ago [1] and a new
version of it in June 23, 2003 [2]. An extension of the type
syslem based on F-bounded quantification is proposed.

A binary method is a method that has one or more
parameters of the same type as the object that receives the
message. F-Bounded polymorphism and binary methods
can't be combined smoolhly in object-oriented languages
with nominal subtyping and single dispatch [3].

In this paper, we address some problems that can arise
when binary methods are needed in parameterized classes
and interfaces in the implementation of a Java program,

Keywords:
Binary melhods, Inheritance, Java, Parameterized types.

1. INTRODUCTION

The addition of parameiric polymorphism to the Java
Programming Language has been under consideration for
several years. Many proposals were presented and finally a
draft specification to add generics to the Java programming
language [1] was released in April 2001. This specification
is an evolution of an early proposal called Generic Java
(GJ), which is described in [4]. A prolotype implementalion
of the Java compiler that supporis generics, as described in
the draft specification, is available for developers who want
to start wriling generic code.

Java is being updated 1o incorporate some new elements in
the language like parameterized types and type variables to
support the creation of generic code (classes, interfaces,
and methods). The requirements specify that no changes to
the JVM should be done 1o support thesa new features.
The lechnique used lo translate generic code into Java
bytecode is called type erasure. In this technique, all the
type parameters defined in the parameterized type are
replaced by type Object in order to make them compatible
wilh existing class libraries. When a client uses a
parameterized lype lo define inslances of it, in the
translation process, the compiler will insert some bridge
methods and coercions, which are guaranteed not to fail at
execulion time.

In Java when the generic idiom is used to implement
generic code some coercion operations are requireq in
client code to ensure type safety. These operalions

Computer Science Department
Florida Institute of Technology
University Blvd. Melboume, FL 32901
Phone 321-6747156 Fax. 321-6747046
ryan@ecs.fit.edu

increase the execution lime and the class file size. The
translation approach used in Generic Java to iranslate
paramelerized types improves neither performance nof
class file size. When a paramelerized type is franslated the
class file obtained is exaclly the same as the one
implementing the generic idiom. Client code does not
explicilly require coercions but they are automalically
inserled in the translation process increasing execution
time and class file size. If performance efficiency
important, we could ge! rid of cast operations in client code
using a hand specialized code' for each particular type.
Another facl of this approach is that primitive types cannot
be used to create instances of paramelerized types
because they are not derived from type Object. The
translalion of paramelerized types erases lype parameters,
which makes the types not available at run-time.

Generic code can be unconstrained or consirained. There
are several mechanisms to consiraint polymorphism

object-oriented languages. The one proposed by Cardelli
and Wegner [5] allows expressing the idea that a function
can be applied lo all types that are a subtype of another.
This mechanism is not powerful enough to express all kind
of constraints like the ones needed for recursive type
definition. It is possible to define type paramelers with
recursive constraints using F-bounded quantification [6).

The implementation of generics in Java as described in the
draft specification document is based on the F-bounded
mechanism. When a type is defined to be constrained
recursively, i is not possible to reuse coda through
inheritance because subclasses can not redefine recursive
bounds to themselves and so they can not be used
create instances of a parameterized type. They inherit
bound defined in the superclass. A classical example hay
needs a recursive bound definition on the type parameler
the implementation of binary methods. A recursive bound
needed in order to constraint the type of the object used
the binary method olherwise the programmer has
responsibility to write code lo verify the type of that object.

Code reuse is one of the main promises of object-orienlecam
languages. In Java it seems that the use of F-boundecu
polymorphism in the definition of a class disallows the usew
of inheritance to generale subclasses thal can be used

the instantialion of parameterized types. An altemativew
method must be used in order to be able to createm
subclasses that define their own bounds allowing them

! ﬂtiupptm:hhualsosomednwbadaumwedomtaddxwhm

J. Diaz de Le6n, G. Gonzalez, J. Figueroa (Eds.): Avances en Clencias de la Computacién, pp. 281-285, 2003.

@ IPN, México 2003.



282 L. Barron and R. Stansifer

reuse some of the code defined in the supen;lass and use
the subclass to create instances of parametenized types.

®The purpose of this paper is to show some examples that
~explore the use of constrained generics in the presence of
winary methods. We address the situation when a
gorogrammer needs to create a subclass from a class that
#has an F-bound constraint and wants to use this subclass
create an instance of a parameterized type. We also
show some problems that can arise in execution time.

Section 2 introduces .some terms used in the paper.
Section 3 states the problem we use as example in this
paper and briefly descnbes three different imple_menlations.
Section 4 presents the implementations in detail as well as
some of their problems. Section § examines other
implementation altematives. Conclusions are presented in
section 6.

TERMINOLOGY

Binary method. A Binary method is one that contains one
more parameters of the same type of the object that

receives the message.

Bounded polymorphism. Bounded type abstraction. It
allows one to define a function which works for every type

that is a subtype of a bound A, and whose result type

depends on A".

Contravariance. Contravariance is a relationship that
captures the subtyping relation. It means that changes of a
particular type are opposite to the type hierarchy.
Constrained genericity. The types used as type
paramelers are restricled by some other types.
Covariance. Covariance is a relationship that
characterizes code specialization. Changes of a particular
type are parallel to the type hierarchy.

F-Bounded polymorphism. Generalizes System Fg
exiending it with recursive types.

Inclusion polymorphism. An object can be viewed as
belonging to many classes.

Inheritance. Inheritance is a mechanism to derive new
classes or interfaces from existing ones. ;
Interface. An interface declaration contains constants and
abstract methods that are supported by classes that
implement that interface.

Multi-methods. Multimethods are also known as generic
functions. Methods can beiong to more than one class and
they can be dispatched based on the types of all
parameters.

Multiple dispatch. In multiple dispatch the selection of the
method to be executed depends on the type of all the
parameters of the message not only on the receiver.
Novariance. Novariance means that types do not change
in the type hierarchy.

Parametric Polymorphism. Works uniformly in a range of
types. A polymorphic function has the ability to receive a
type parameter that determines the type of the argument
for the application of this function. [5)

Single dispatch. In single dispatch the selection of the
method to be executed depends only on the type of the
object that receives the message.

Subtyping. Subtyping allows a value of a subtype to be
used anywhere a value of its supertype is expected.
Unconstrained genericity. Any type can be used as type
parameter in the instantiation of a parameterized type.
There is no restriction.

Java is a strongly typed object-oriented language with
single dispatch. It provides inclusion polymorphism ang will
soon provide parametric polymorphism. The creation of
collections of elements such as Class<T> where Clasg
represents a parameterized type and T a type parameler
will soon be allowed.

3. PROBLEM DESCRIPTION

Our goal is to implement an OrderedList class thal can be
used to create ordered lists of any collection of elements
that understand the messages eq, le, and ge, which
represent equal, less-or-equal, and greater-or-equal
respectively. The elements of the list must be orderable 5o
the method member can use the equal message to
compare the element we are looking for with the elements
of the list. The method insert needs to use the /e message
when looking for a place where to insert a new element in
the ordered list.

We examine three ways to implement the generic class that
manipulates an ordered list of elements. In all the
implementations we follow the rules of the Java
programming language [7] and its specification to add
generics to the language known as Generic Java (2].

o Unconstrained genericity. The generic idiom is used o
implement this solution. Section 4.1 explains why this
solution in not appropriate to solve this problem.

o Genericity with a simple bound. This approach restricts
the type of the parameters used in the instantiations of
parameterized types. The parameter type must be
bounded to another type to ensure that it implements
some methods needed. A solution using a simple bound
is presented in section 4.2.

o Genericity with a recursive bound. Using a recursive
bound on the type parameter ensures that the required
arguments are of the same type than the object that
receives the message. Section 4.3 shows a solution
using a recursive bound.

4. IMPLEMENTATIONS

4.1. Unconstrained genericity.

Sometimes it is possible to write generic code using Object
to implement it. This implementation is known as using the
generic idiom. For example we can implement a generic
Stack class that manipulates objects or a generic List that
link objects. These generic classes are not required to have
a specific method. They are unconstrained. In our case, 10
define the OrderedList class, we need to constraint the
classes to have some methods (le, ge, eq) that are needed
to compare elements.

Object contains the definition of an equals method. This
method is provided to allow value comparisons between
objects.

boolean equals (Object elem);

All classes that override this method must agree with the
general contract which specifies that it implements an
equivalent relalion: it is reflexive, symmetric, transitive, and -
consistent [7].



Inheritance, Generics, and Binary Methods in Java 283

Using Object, we can send the messa

) ge equals (o
compare two objects for equality but the other comparison
needed in our example, /ess-or-equal and greater-or-equal,
are not present in Object and can't be added to it '

4.2. Genericity with a simple bound.

We define an interface that declares the methods we
required in our example. The interface is called Orderable.
A typical code of this interface is shown next.
interface Orderable {
boolean eq (Orderable other);
boolean le (Orderable other);

We declare the class OrderedList with a type parameter T.
T is bounded to Orderable. This means that the classes
used to create instances of the paramelerized type
OrderedList must implement the interface Orderable.
class OrderedList<T implements Orderable> {
T listElem;

void insert(T elem) { ... it (listElem.le(elem)) ... )
boolean member (T elem) (

. if (listElem.eq(elem)) ...}
J

4.2.1. Defining a client class.

We now define a Point class. We will use the class Point to
create an instance of the parameterized class OrderedList.
According with the constraint defined in the type parameter
of OrderedList, our class Point must implements the
Orderable interface.
class Point implements Orderable {
intx.y:
boolean eq (Orderable other) {
I/ we need to cast other lo Point before using it
11 if otheris an instance of Poinl compare x and y
/I whatto do if otheris a subtype of Point?
/1 what lo do if otheris not an instance of Point?

}

}

In class Point the implementation of the method eq must
have the same signature as its declaration in interface
Orderable. The parameter cannot be covariantly
specialized because the Java's type system doesn't allow
specialization in order to preserve type safety. In this case,
the programmer has the responsibility to ensure that the
type of the parameter received is the one that is expected
or to raise an exception otherwise.

4.2.2. Deriving a class. |

We define another class ColorPoint derived from Point.
This new class extends the Point class and overides all the
methods defined in Orderable, to manipulate ColorPoint
objects. The signature of those methods can not be
modified. ColorPoint is a subtype of Point.
_ class ColorPoint extends Point{
String ¢,

boolean eq (Orderable other) {
/I we need to cast otherto ColorPoint before using it
I/t compare x, y and c variables
/1 whal to do if other is not an Instance of ColorPoint?

}
}

It is not easy to implement comrectly the methods of the
Orderable interface. The type parameters of the methods
defined in Orderable are of type Orderable. Each class that
implements Orderable must take care of the type of the
object received as argument at execution time because
some problems that are not detected at compile-time can
occur..An example is illustrated as follow. Suppose that
there is an object rectangle created from a class called
Rectangle, which is not derived from Point, and implements
the interface Orderable. There is also a point object created
from Point. It could be possible to use the object rectangle
and compare it with point because they both have the eq
method.which receives an Orderable type as argument.
point.eq(reclangle); Ii compile-time okl

In this case the method eq defined in class Point is going to
be executed because the type of the object that receives
the message is Poinl. The type of the argument
(Rectangle) is not considered in the selection of the method
to be executed because Java has single dispatch.

{kt compile time the comparison of a point with a rectangle
is typg-safe because they both are type Orderable but it is
meaningless. We need a mechanism to ensure that the
type of the object that receives the message and its
parameter are of the same type. But this is not possible to
express with a simple bound. This situation can be solved
using a generalized form of parametric polymorphism which
we present in section 4.3,

4.2.3. Using the parameterized type.

We can create instances of OrderedList using Paint and
ColorPoint classes.

OrderedList<Point> pointList = new OrderedList<Point>;
OrderedList<ColorPoint> colorList =
new OrderedList<ColorPoint>;

poinri}'st insert{new Point(0,0));

In this case, the elements of the ordered list pointList are
not restricted to be only of type Point but of any type
derived from Point. It is possible to insert a ColorPoint
object into an ordered list of Point elements because
ColorPaint is a subtype of Point and according to subtyping
rule; it is safe to use a subtype where a supertype is
expected. In this case an object of type Point is expected
but we can use an object of type ColorPoint.
pointList.insert(new ColorPoint(1,1,’red?));

In our example pointList contains two elements, a point and
a colored point as illustrated in figure 1.

=0, y=0, i x=hiy=lic=red”

Figure 1. Actual state of pointList.

it is also possible to use as argument a ColorPoint object

when the member message is sent. This is illustrated in the

following example. )
pointList.member(new ColorPoin(0, 0,"white?);

When the member method of OrderedList c{ass
executed, it calls the eg method to compare the objects
the list with the object received as argument The



284 L. Barron and R. Stansifer

method executed is the one defined in class Point. which
will compare only the x and y vanables to decide if the
objects are the same. In this case. we will receive a TRUE
value that means that ColorPoint(0,0,"white") is in pointList
although it is not.

To avoid this, we must define a contract to our
implementation of Orderable interface where the equal
method must implement an equivalence relation.

4.3. Genericity with a recursive bound.

Generic Java relies on F-Bounded polymorphism to allow
the definition of parameterized types.

In OrderedList<T implements Orderable<T>> the type
parameter T is constrained to implement an interface that is
parameterized with itself. A type parameter is needed to
define an instance of OrderedList class. The type that can
be used to instantiate OrderedList is restricted to implement
the parameterized interface Orderable.

When a class is defined with a recursive bound the
possibility of reuse its code through inheritance is lost. We
illustrate this in the next example.

4.3.1. Interface declaration.

We define a parameterized interface with some abstract
methods for any type T.
interface Orderable<T> {
boolean eq (T other);

}
4.3.2. Class declaration,

We define a parameterized class called OrderedList, with a
type parameter T which is bounded 1o interface
Orderable<T>.

class OrderedList<T implements Orderable<T>> {

}
4.3.3. Defining a client class.

Now we define a class called Point that provides
implementation for all the abstract methods in the
parameterized interface Orderable. This class can be
derived from other classes that do not implement the same
parameterized interface.

class Point implements Orderable<Point> {

boolean eq (Point other) {... }
//the type of the parameler is specialized to type Point

Class Point can be used as an actual type parameter to

create instances of OrderedList because Point implements

Orderable<Point>. We instantiate the class as follows:
OrderedList<Point> Ip = new OrderdedList<Point>;

4.3.4. Crealing a subclass.

It is possible to define new classes from existing ones. We
derive a class called CP from class Point.

class CP extends Point {...)
Class CP inherits all from class Point including the
methods’ implementation of Orderable but those methods
are implemented for parameters of type Point and can not
be covariantly changed to type CP. Overriding a method

does not allow to change the type of the parameters in g
covariant way (from class to subclass). The type obtained
with the definition of class CP is a subtype of type P,

4.3.5. The problem.

We can not use class CP, or any other derived class form
Point, to create instances of OrderedList.

OrderedList<CP> Icp = new OrderdedList<CP>;

// compile-time errori!

This declaration will generale an error at compile time
because class CP does not implement the interface
Orderable<CP>. It inherited Orderable<Point>,
On the other hand, we are not allowed to define a class that
is at the same time a subtype of two interface types that are
parameterizations of the same interface. Thus the next
definition will also generate an error at compile time.

class CP extends Point implements Orderable<CP> {

...} 1l compile-time erroril

This error is generated due to a restriction imposed by the
technique used in the implementation of parameterized
types in Java. The explanation is found in [1].

“To support translation by type erasure, we impose the restriction
that a class or type variable may not at the same time be a sublype
of wo interface types which are different parameterizations of the
same Interface. Hence, every superclass and implemented
interface of a paramelerized type or ltype variable can be
augmented by parametenzation lo exactly one supertype.”

5. ALTERNATIVES

5.1. Avoid inheritance.

In order to use the class CP to create instances of
OrderedList, we need to define it independently of class
Point. Here is a third approach to declaring CP:
class CP implements Orderable<CP> {
... //repeat all code from class Point
boolean eq (CP other) {...}

As we notice with this declaration of class CP, code reuse
through inheritance is not possible and we have to repeat
the code we were reusing from class Point in class CP.
Class CP is no longer a subclass of class P and therefore
objects of type CP are not subtypes of those with type
Point. Nominal subtyping is used in Java and deriving a
class from other class yields also to a subtype of the parent
class. This is not true in Objective ML, were a class that
has binary methods can be extended by inheritance to
create new classes but the derived class is nota subtype of
the parent class. Binary methods are comectly handled
because the type of self is kept open while typing classes
(8.

5.2. Inherit first then impose bounds.

We need to choose another option to be able to creale a
subclass that inherits from class Point and can be used to
create instances of the parameterized ciass OrderedList. A
possible solution is to use a kind of clone class to
implement the Orderable interface independently of the
class hierarchy. Suppose we define the following classes
and interfaces.

class Point {...)

class CP extends Point {...}

// class CP inherits from class Point



Inheritance, Generics, and Binary Methods in Java 285

Interface Orderable<T> {..))
class OrderedList<T implements Orderable<T>> {...)

Then we can creale subclasses of Point and CP that
implement Orderable for them as follows.
class OP extends Point implements Orderable<OP>{
boolean eq (OP other) { ... )

)
class OCP extends CP
implements Orderable<OCP>>(
boolean eq (OCP other) { ...}
)}

The hierarchy created by all the above definitions is shown

in figure 2.
Crom D
Ceed (oD
CocrD

Figure 2. Type hierarchy of classes Point and CP.

Although classes OP and OCP are derived from class
Point, the types of classes OP and OCP are not related at
all. Classes P and CP can not be used to creale instances
of OrderedList because they do not implement the interface
Orderable. Classes OP and OCP can be used to instanliate
OrderedList as follows.

OrderedList<OP> Ip = new OrderdedList<OP>;

OrderedList<OCP> lcp = new OrderdedList<OCP>;

The elements that will be part of Ip will be only of type OP.
OP does not have subtypes so all the elements in the
collection will be homogeneous. It is the same case for /cp
all its elements will be of type OCP.

5.3. Multi-methods for Java.

In languages that support multi-methods the selection of
the method 1o be executed at run-time is based in all the
parameters not just the receiver. Boyland and Castagna (9]
proposed an extension to the Java programming language
that support implementation of mulli-methods. In their
proposal they argue that their implementation of multi-
methods for Java can be translated at source level into
programs that do not have them. The implementation of
multi-methods is modular, type-safe, and allows separate
compilation.

6. CONCLUSIONS

One of the most important changes of Java that will be
delivered by the end of this year in Tiger, Java version 1.5
compiler, is the introduction of generic types. This
extension affects only the source language syntax by
adding parameterized types and variables among some
other features like automatic boxing of primitive types and
enumeration types. No changes to the JVM are made.

!n this paper we presented an example and some
!mplgmentations that require the use of genericity,
inheritance and binary methods as well as some problems

that can arise when we want to reuse code from a
superclass.

The inclusion of generics in Java enhances its expressivity
and produces safer code because more errors are caught
at compile-time. On the other hand, subclasses denved
form recursively paramelerized classes, cannot be used to
instantiate parameterized types; an alternative solution
must be implemented in order to be able to reuse code.

The two models of object-oriented languages [10] [11)
seem to be not able (enough) to capture ail the features

required by a language that support the complexity of
object-orientation.

REFERENCES

[1) Gilad Bracha, Norman Cohen, Christian Kemper, Steve Max,
Marlin Odersky, Sven-Erc Paintz, David Sloutamire, Kresten
Thorup, and Philip Wadler. Adding generics lo the Java™
Programming Language: Participant Draft Specificalion. April 27,
2001. [Online). http-//java.sun.com

(2] Gilad Bracha, Noman Cohen, Christian Kemper, Martin
Odersky, David Stoutamire, Kresten Thorup, and Philip Wadler.
Adding generics to the Java™ Programming Language: Public
Draft Specification, Version 2.0. June 23, 2003. [Onlina].
http:/fjava.sun.com

[3]) Kim B. Bruce, Luca Cardelli, Gluseppe Castagna, the Hopkins
Objects Group, Gary T. Leavens, and Benjamin Pierce. On binary
methods. Theory and Practice of Object Syslems, 1(3):221-242,
1996.

(4) Gilad Bracha, David Stoutamire, Martin Odersky, and Philip
Wadler. Making the future safe for the pasl: Adding genericity lo
the Java programming language. In Proceedings of OOPSLA'98,
October 1998.

[5] Luca Cardelll and Peter Wegner. On understanding Types,
Data abstraction, and Polymorphism. Computing Surveys, Vol. 17
n. 4, pp 471-522, December 1885

[6] Peter S. Canning, William Cook, Waiter L. Hill, John Mitcheil,
and Waiter Olthoof. F-Bounded Polymorphism for Object-Oriented
Programming. In Proceedings of the Fourth Intematonal
Conference on Functional Programming Languages and Computer
Architecture, pages 273-280. ACM, 1989,

[7] James Gosling. Bi! Joy. Guy L. Sleele, and Gllad Bracha.
The Java Language Specification. Java series. Addison-Wesley,
Reading, Massachusells, second edition, 2000.

8] Didier Remy and Jerome Vouillon. Objective ML: An effective
objed-oriented extension to ML. Theory and Practice of Object
Systems. 1998.

[9) John Boyland and Gluseppe Castagna. Parasitic Methods: An
Implementation of Multi-Methods for Java. Proceedings of ACM
OOPSLA 97 Conference. Atlanta, GA, USA 1997,

10] Luca Cardeli, A Semantics of Multiple Inheritance. Inf.
Computation 76, 138-164,

[11] Giuseppe Castagna, G Ghelll, and G Longo. A calculus for
overloaded functions with sublyping. Information and Computation
117.1,115-135 1995. A preliminary version has been presented al
the 1992 ACM Conference on LISP and Functional Programming
(San Francisco, June 1992)



